- weakly compact sequence
- слабо компактная последовательность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Weakly compact cardinal — In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by harvtxt|Erdös|Tarski|1961; weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Compact operator — In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia
Sequence space — In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural… … Wikipedia
Spectral theory of compact operators — In functional analysis, compact operators are linear operators that map bounded sets to precompact ones. Compact operators acting on a Hilbert space H is the closure of finite rank operators in the uniform operator topology. In general, operators … Wikipedia
Continuous functions on a compact Hausdorff space — In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by C(X), is a vector… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Weak convergence (Hilbert space) — In mathematics, weak convergence is a type of convergence of a sequence of points in a Hilbert space (and, more generally, in a Banach space). DefinitionA sequence of points (x n) in a Hilbert space H , with n an integer, is said to converge… … Wikipedia
Permutation — For other uses, see Permutation (disambiguation). The 6 permutations of 3 balls In mathematics, the notion of permutation is used with several slightly different meanings, all related to the act of permuting (rearranging) objects or values.… … Wikipedia
Dunford–Pettis property — In functional analysis, the Dunford–Pettis property, named after Nelson Dunford and B. J. Pettis, is a property of a Banach space stating that all weakly compact operators from this space into another Banach space are completely continuous. Many… … Wikipedia